This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in Beran p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice CH . (Contributed by NM, 2-Mar-2004) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sshjval3 | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A vH B ) = ( \/H ` { A , B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | |- ~H e. _V |
|
| 2 | 1 | elpw2 | |- ( A e. ~P ~H <-> A C_ ~H ) |
| 3 | 1 | elpw2 | |- ( B e. ~P ~H <-> B C_ ~H ) |
| 4 | uniprg | |- ( ( A e. ~P ~H /\ B e. ~P ~H ) -> U. { A , B } = ( A u. B ) ) |
|
| 5 | 2 3 4 | syl2anbr | |- ( ( A C_ ~H /\ B C_ ~H ) -> U. { A , B } = ( A u. B ) ) |
| 6 | 5 | fveq2d | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( _|_ ` U. { A , B } ) = ( _|_ ` ( A u. B ) ) ) |
| 7 | 6 | fveq2d | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( _|_ ` ( _|_ ` U. { A , B } ) ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
| 8 | prssi | |- ( ( A e. ~P ~H /\ B e. ~P ~H ) -> { A , B } C_ ~P ~H ) |
|
| 9 | 2 3 8 | syl2anbr | |- ( ( A C_ ~H /\ B C_ ~H ) -> { A , B } C_ ~P ~H ) |
| 10 | hsupval | |- ( { A , B } C_ ~P ~H -> ( \/H ` { A , B } ) = ( _|_ ` ( _|_ ` U. { A , B } ) ) ) |
|
| 11 | 9 10 | syl | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( \/H ` { A , B } ) = ( _|_ ` ( _|_ ` U. { A , B } ) ) ) |
| 12 | sshjval | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
|
| 13 | 7 11 12 | 3eqtr4rd | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A vH B ) = ( \/H ` { A , B } ) ) |