This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a II-finite set is II-finite. (Contributed by Stefan O'Rear, 2-Nov-2014) (Revised by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssfin2 | |- ( ( A e. Fin2 /\ B C_ A ) -> B e. Fin2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A e. Fin2 /\ B C_ A ) /\ x e. ~P ~P B ) -> A e. Fin2 ) |
|
| 2 | elpwi | |- ( x e. ~P ~P B -> x C_ ~P B ) |
|
| 3 | 2 | adantl | |- ( ( ( A e. Fin2 /\ B C_ A ) /\ x e. ~P ~P B ) -> x C_ ~P B ) |
| 4 | simplr | |- ( ( ( A e. Fin2 /\ B C_ A ) /\ x e. ~P ~P B ) -> B C_ A ) |
|
| 5 | 4 | sspwd | |- ( ( ( A e. Fin2 /\ B C_ A ) /\ x e. ~P ~P B ) -> ~P B C_ ~P A ) |
| 6 | 3 5 | sstrd | |- ( ( ( A e. Fin2 /\ B C_ A ) /\ x e. ~P ~P B ) -> x C_ ~P A ) |
| 7 | fin2i | |- ( ( ( A e. Fin2 /\ x C_ ~P A ) /\ ( x =/= (/) /\ [C.] Or x ) ) -> U. x e. x ) |
|
| 8 | 7 | ex | |- ( ( A e. Fin2 /\ x C_ ~P A ) -> ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) |
| 9 | 1 6 8 | syl2anc | |- ( ( ( A e. Fin2 /\ B C_ A ) /\ x e. ~P ~P B ) -> ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) |
| 10 | 9 | ralrimiva | |- ( ( A e. Fin2 /\ B C_ A ) -> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) |
| 11 | ssexg | |- ( ( B C_ A /\ A e. Fin2 ) -> B e. _V ) |
|
| 12 | 11 | ancoms | |- ( ( A e. Fin2 /\ B C_ A ) -> B e. _V ) |
| 13 | isfin2 | |- ( B e. _V -> ( B e. Fin2 <-> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( A e. Fin2 /\ B C_ A ) -> ( B e. Fin2 <-> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
| 15 | 10 14 | mpbird | |- ( ( A e. Fin2 /\ B C_ A ) -> B e. Fin2 ) |