This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proof of ax-8 that does not rely on ax-8 . It employs df-ss to perform alpha-renaming and eliminates disjoint variable conditions using ax-9 . Contrary to in-ax8 , this proof does not rely on df-cleq , therefore using fewer axioms . This method should not be applied to eliminate axiom dependencies. (Contributed by GG, 30-Aug-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ss-ax8 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑤 → 𝑦 = 𝑤 ) ) | |
| 2 | ax12v2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝑥 ∈ 𝑡 ) ) ) | |
| 3 | 2 | imp | ⊢ ( ( 𝑥 = 𝑤 ∧ 𝑥 ∈ 𝑡 ) → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝑥 ∈ 𝑡 ) ) |
| 4 | equsb3 | ⊢ ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 ↔ 𝑥 = 𝑤 ) | |
| 5 | 4 | bicomi | ⊢ ( 𝑥 = 𝑤 ↔ [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 ) |
| 6 | 5 | imbi1i | ⊢ ( ( 𝑥 = 𝑤 → 𝑥 ∈ 𝑡 ) ↔ ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 → 𝑥 ∈ 𝑡 ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑤 → 𝑥 ∈ 𝑡 ) ↔ ∀ 𝑥 ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 → 𝑥 ∈ 𝑡 ) ) |
| 8 | df-clab | ⊢ ( 𝑥 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } ↔ [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 ) | |
| 9 | 8 | bicomi | ⊢ ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 ↔ 𝑥 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } ) |
| 10 | 9 | imbi1i | ⊢ ( ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 → 𝑥 ∈ 𝑡 ) ↔ ( 𝑥 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑥 ∈ 𝑡 ) ) |
| 11 | 10 | albii | ⊢ ( ∀ 𝑥 ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 → 𝑥 ∈ 𝑡 ) ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑥 ∈ 𝑡 ) ) |
| 12 | df-ss | ⊢ ( { 𝑣 ∣ 𝑣 = 𝑤 } ⊆ 𝑡 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑥 ∈ 𝑡 ) ) | |
| 13 | df-ss | ⊢ ( { 𝑣 ∣ 𝑣 = 𝑤 } ⊆ 𝑡 ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑦 ∈ 𝑡 ) ) | |
| 14 | 12 13 | bitr3i | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑥 ∈ 𝑡 ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑦 ∈ 𝑡 ) ) |
| 15 | df-clab | ⊢ ( 𝑦 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } ↔ [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 ) | |
| 16 | 15 | imbi1i | ⊢ ( ( 𝑦 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑦 ∈ 𝑡 ) ↔ ( [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
| 17 | 16 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
| 18 | 11 14 17 | 3bitri | ⊢ ( ∀ 𝑥 ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 → 𝑥 ∈ 𝑡 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
| 19 | equsb3 | ⊢ ( [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 ↔ 𝑦 = 𝑤 ) | |
| 20 | 19 | imbi1i | ⊢ ( ( [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 → 𝑦 ∈ 𝑡 ) ↔ ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
| 21 | 20 | albii | ⊢ ( ∀ 𝑦 ( [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
| 22 | 7 18 21 | 3bitri | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑤 → 𝑥 ∈ 𝑡 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
| 23 | 22 | biimpi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑤 → 𝑥 ∈ 𝑡 ) → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
| 24 | sp | ⊢ ( ∀ 𝑦 ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) → ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) | |
| 25 | 3 23 24 | 3syl | ⊢ ( ( 𝑥 = 𝑤 ∧ 𝑥 ∈ 𝑡 ) → ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
| 26 | 25 | ex | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑡 → ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) ) |
| 27 | 26 | com23 | ⊢ ( 𝑥 = 𝑤 → ( 𝑦 = 𝑤 → ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) ) ) |
| 28 | 1 27 | sylcom | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) ) ) |
| 29 | 28 | com12 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) ) ) |
| 30 | 29 | equcoms | ⊢ ( 𝑤 = 𝑥 → ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) ) ) |
| 31 | ax6ev | ⊢ ∃ 𝑤 𝑤 = 𝑥 | |
| 32 | 30 31 | exlimiiv | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) ) |
| 33 | ax9 | ⊢ ( 𝑧 = 𝑡 → ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑡 ) ) | |
| 34 | 33 | equcoms | ⊢ ( 𝑡 = 𝑧 → ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑡 ) ) |
| 35 | ax9 | ⊢ ( 𝑡 = 𝑧 → ( 𝑦 ∈ 𝑡 → 𝑦 ∈ 𝑧 ) ) | |
| 36 | 34 35 | imim12d | ⊢ ( 𝑡 = 𝑧 → ( ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
| 37 | 32 36 | syl5 | ⊢ ( 𝑡 = 𝑧 → ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
| 38 | ax6ev | ⊢ ∃ 𝑡 𝑡 = 𝑧 | |
| 39 | 37 38 | exlimiiv | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) |