This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proof of ax-8 that does not rely on ax-8 . It employs df-ss to perform alpha-renaming and eliminates disjoint variable conditions using ax-9 . Contrary to in-ax8 , this proof does not rely on df-cleq , therefore using fewer axioms . This method should not be applied to eliminate axiom dependencies. (Contributed by GG, 30-Aug-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ss-ax8 | |- ( x = y -> ( x e. z -> y e. z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7 | |- ( x = y -> ( x = w -> y = w ) ) |
|
| 2 | ax12v2 | |- ( x = w -> ( x e. t -> A. x ( x = w -> x e. t ) ) ) |
|
| 3 | 2 | imp | |- ( ( x = w /\ x e. t ) -> A. x ( x = w -> x e. t ) ) |
| 4 | equsb3 | |- ( [ x / v ] v = w <-> x = w ) |
|
| 5 | 4 | bicomi | |- ( x = w <-> [ x / v ] v = w ) |
| 6 | 5 | imbi1i | |- ( ( x = w -> x e. t ) <-> ( [ x / v ] v = w -> x e. t ) ) |
| 7 | 6 | albii | |- ( A. x ( x = w -> x e. t ) <-> A. x ( [ x / v ] v = w -> x e. t ) ) |
| 8 | df-clab | |- ( x e. { v | v = w } <-> [ x / v ] v = w ) |
|
| 9 | 8 | bicomi | |- ( [ x / v ] v = w <-> x e. { v | v = w } ) |
| 10 | 9 | imbi1i | |- ( ( [ x / v ] v = w -> x e. t ) <-> ( x e. { v | v = w } -> x e. t ) ) |
| 11 | 10 | albii | |- ( A. x ( [ x / v ] v = w -> x e. t ) <-> A. x ( x e. { v | v = w } -> x e. t ) ) |
| 12 | df-ss | |- ( { v | v = w } C_ t <-> A. x ( x e. { v | v = w } -> x e. t ) ) |
|
| 13 | df-ss | |- ( { v | v = w } C_ t <-> A. y ( y e. { v | v = w } -> y e. t ) ) |
|
| 14 | 12 13 | bitr3i | |- ( A. x ( x e. { v | v = w } -> x e. t ) <-> A. y ( y e. { v | v = w } -> y e. t ) ) |
| 15 | df-clab | |- ( y e. { v | v = w } <-> [ y / v ] v = w ) |
|
| 16 | 15 | imbi1i | |- ( ( y e. { v | v = w } -> y e. t ) <-> ( [ y / v ] v = w -> y e. t ) ) |
| 17 | 16 | albii | |- ( A. y ( y e. { v | v = w } -> y e. t ) <-> A. y ( [ y / v ] v = w -> y e. t ) ) |
| 18 | 11 14 17 | 3bitri | |- ( A. x ( [ x / v ] v = w -> x e. t ) <-> A. y ( [ y / v ] v = w -> y e. t ) ) |
| 19 | equsb3 | |- ( [ y / v ] v = w <-> y = w ) |
|
| 20 | 19 | imbi1i | |- ( ( [ y / v ] v = w -> y e. t ) <-> ( y = w -> y e. t ) ) |
| 21 | 20 | albii | |- ( A. y ( [ y / v ] v = w -> y e. t ) <-> A. y ( y = w -> y e. t ) ) |
| 22 | 7 18 21 | 3bitri | |- ( A. x ( x = w -> x e. t ) <-> A. y ( y = w -> y e. t ) ) |
| 23 | 22 | biimpi | |- ( A. x ( x = w -> x e. t ) -> A. y ( y = w -> y e. t ) ) |
| 24 | sp | |- ( A. y ( y = w -> y e. t ) -> ( y = w -> y e. t ) ) |
|
| 25 | 3 23 24 | 3syl | |- ( ( x = w /\ x e. t ) -> ( y = w -> y e. t ) ) |
| 26 | 25 | ex | |- ( x = w -> ( x e. t -> ( y = w -> y e. t ) ) ) |
| 27 | 26 | com23 | |- ( x = w -> ( y = w -> ( x e. t -> y e. t ) ) ) |
| 28 | 1 27 | sylcom | |- ( x = y -> ( x = w -> ( x e. t -> y e. t ) ) ) |
| 29 | 28 | com12 | |- ( x = w -> ( x = y -> ( x e. t -> y e. t ) ) ) |
| 30 | 29 | equcoms | |- ( w = x -> ( x = y -> ( x e. t -> y e. t ) ) ) |
| 31 | ax6ev | |- E. w w = x |
|
| 32 | 30 31 | exlimiiv | |- ( x = y -> ( x e. t -> y e. t ) ) |
| 33 | ax9 | |- ( z = t -> ( x e. z -> x e. t ) ) |
|
| 34 | 33 | equcoms | |- ( t = z -> ( x e. z -> x e. t ) ) |
| 35 | ax9 | |- ( t = z -> ( y e. t -> y e. z ) ) |
|
| 36 | 34 35 | imim12d | |- ( t = z -> ( ( x e. t -> y e. t ) -> ( x e. z -> y e. z ) ) ) |
| 37 | 32 36 | syl5 | |- ( t = z -> ( x = y -> ( x e. z -> y e. z ) ) ) |
| 38 | ax6ev | |- E. t t = z |
|
| 39 | 37 38 | exlimiiv | |- ( x = y -> ( x e. z -> y e. z ) ) |