This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for srhmsubc . (Contributed by AV, 19-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srhmsubc.s | |- A. r e. S r e. Ring |
|
| srhmsubc.c | |- C = ( U i^i S ) |
||
| srhmsubc.j | |- J = ( r e. C , s e. C |-> ( r RingHom s ) ) |
||
| Assertion | srhmsubclem3 | |- ( ( U e. V /\ ( X e. C /\ Y e. C ) ) -> ( X J Y ) = ( X ( Hom ` ( RingCat ` U ) ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srhmsubc.s | |- A. r e. S r e. Ring |
|
| 2 | srhmsubc.c | |- C = ( U i^i S ) |
|
| 3 | srhmsubc.j | |- J = ( r e. C , s e. C |-> ( r RingHom s ) ) |
|
| 4 | 3 | a1i | |- ( ( U e. V /\ ( X e. C /\ Y e. C ) ) -> J = ( r e. C , s e. C |-> ( r RingHom s ) ) ) |
| 5 | oveq12 | |- ( ( r = X /\ s = Y ) -> ( r RingHom s ) = ( X RingHom Y ) ) |
|
| 6 | 5 | adantl | |- ( ( ( U e. V /\ ( X e. C /\ Y e. C ) ) /\ ( r = X /\ s = Y ) ) -> ( r RingHom s ) = ( X RingHom Y ) ) |
| 7 | simpl | |- ( ( X e. C /\ Y e. C ) -> X e. C ) |
|
| 8 | 7 | adantl | |- ( ( U e. V /\ ( X e. C /\ Y e. C ) ) -> X e. C ) |
| 9 | simpr | |- ( ( X e. C /\ Y e. C ) -> Y e. C ) |
|
| 10 | 9 | adantl | |- ( ( U e. V /\ ( X e. C /\ Y e. C ) ) -> Y e. C ) |
| 11 | ovexd | |- ( ( U e. V /\ ( X e. C /\ Y e. C ) ) -> ( X RingHom Y ) e. _V ) |
|
| 12 | 4 6 8 10 11 | ovmpod | |- ( ( U e. V /\ ( X e. C /\ Y e. C ) ) -> ( X J Y ) = ( X RingHom Y ) ) |
| 13 | eqid | |- ( RingCat ` U ) = ( RingCat ` U ) |
|
| 14 | eqid | |- ( Base ` ( RingCat ` U ) ) = ( Base ` ( RingCat ` U ) ) |
|
| 15 | simpl | |- ( ( U e. V /\ ( X e. C /\ Y e. C ) ) -> U e. V ) |
|
| 16 | eqid | |- ( Hom ` ( RingCat ` U ) ) = ( Hom ` ( RingCat ` U ) ) |
|
| 17 | 1 2 | srhmsubclem2 | |- ( ( U e. V /\ X e. C ) -> X e. ( Base ` ( RingCat ` U ) ) ) |
| 18 | 7 17 | sylan2 | |- ( ( U e. V /\ ( X e. C /\ Y e. C ) ) -> X e. ( Base ` ( RingCat ` U ) ) ) |
| 19 | 1 2 | srhmsubclem2 | |- ( ( U e. V /\ Y e. C ) -> Y e. ( Base ` ( RingCat ` U ) ) ) |
| 20 | 9 19 | sylan2 | |- ( ( U e. V /\ ( X e. C /\ Y e. C ) ) -> Y e. ( Base ` ( RingCat ` U ) ) ) |
| 21 | 13 14 15 16 18 20 | ringchom | |- ( ( U e. V /\ ( X e. C /\ Y e. C ) ) -> ( X ( Hom ` ( RingCat ` U ) ) Y ) = ( X RingHom Y ) ) |
| 22 | 12 21 | eqtr4d | |- ( ( U e. V /\ ( X e. C /\ Y e. C ) ) -> ( X J Y ) = ( X ( Hom ` ( RingCat ` U ) ) Y ) ) |