This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for srhmsubc . (Contributed by AV, 19-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srhmsubc.s | |- A. r e. S r e. Ring |
|
| srhmsubc.c | |- C = ( U i^i S ) |
||
| Assertion | srhmsubclem2 | |- ( ( U e. V /\ X e. C ) -> X e. ( Base ` ( RingCat ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srhmsubc.s | |- A. r e. S r e. Ring |
|
| 2 | srhmsubc.c | |- C = ( U i^i S ) |
|
| 3 | 1 2 | srhmsubclem1 | |- ( X e. C -> X e. ( U i^i Ring ) ) |
| 4 | 3 | adantl | |- ( ( U e. V /\ X e. C ) -> X e. ( U i^i Ring ) ) |
| 5 | eqid | |- ( RingCat ` U ) = ( RingCat ` U ) |
|
| 6 | eqid | |- ( Base ` ( RingCat ` U ) ) = ( Base ` ( RingCat ` U ) ) |
|
| 7 | id | |- ( U e. V -> U e. V ) |
|
| 8 | 5 6 7 | ringcbas | |- ( U e. V -> ( Base ` ( RingCat ` U ) ) = ( U i^i Ring ) ) |
| 9 | 8 | adantr | |- ( ( U e. V /\ X e. C ) -> ( Base ` ( RingCat ` U ) ) = ( U i^i Ring ) ) |
| 10 | 4 9 | eleqtrrd | |- ( ( U e. V /\ X e. C ) -> X e. ( Base ` ( RingCat ` U ) ) ) |