This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 20-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sprmpod.1 | ⊢ 𝑀 = ( 𝑣 ∈ V , 𝑒 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑣 𝑅 𝑒 ) 𝑦 ∧ 𝜒 ) } ) | |
| sprmpod.2 | ⊢ ( ( 𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜒 ↔ 𝜓 ) ) | ||
| sprmpod.3 | ⊢ ( 𝜑 → ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ) | ||
| sprmpod.4 | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 → 𝜃 ) ) | ||
| sprmpod.5 | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝜃 } ∈ V ) | ||
| Assertion | sprmpod | ⊢ ( 𝜑 → ( 𝑉 𝑀 𝐸 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ∧ 𝜓 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sprmpod.1 | ⊢ 𝑀 = ( 𝑣 ∈ V , 𝑒 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑣 𝑅 𝑒 ) 𝑦 ∧ 𝜒 ) } ) | |
| 2 | sprmpod.2 | ⊢ ( ( 𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜒 ↔ 𝜓 ) ) | |
| 3 | sprmpod.3 | ⊢ ( 𝜑 → ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ) | |
| 4 | sprmpod.4 | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 → 𝜃 ) ) | |
| 5 | sprmpod.5 | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝜃 } ∈ V ) | |
| 6 | 1 | a1i | ⊢ ( 𝜑 → 𝑀 = ( 𝑣 ∈ V , 𝑒 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑣 𝑅 𝑒 ) 𝑦 ∧ 𝜒 ) } ) ) |
| 7 | oveq12 | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝑣 𝑅 𝑒 ) = ( 𝑉 𝑅 𝐸 ) ) | |
| 8 | 7 | breqd | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝑥 ( 𝑣 𝑅 𝑒 ) 𝑦 ↔ 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) ) → ( 𝑥 ( 𝑣 𝑅 𝑒 ) 𝑦 ↔ 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ) ) |
| 10 | 2 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) ) → ( 𝜒 ↔ 𝜓 ) ) |
| 11 | 9 10 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) ) → ( ( 𝑥 ( 𝑣 𝑅 𝑒 ) 𝑦 ∧ 𝜒 ) ↔ ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ∧ 𝜓 ) ) ) |
| 12 | 11 | opabbidv | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑣 𝑅 𝑒 ) 𝑦 ∧ 𝜒 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ∧ 𝜓 ) } ) |
| 13 | 3 | simpld | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 14 | 3 | simprd | ⊢ ( 𝜑 → 𝐸 ∈ V ) |
| 15 | opabbrex | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 → 𝜃 ) ∧ { 〈 𝑥 , 𝑦 〉 ∣ 𝜃 } ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ∧ 𝜓 ) } ∈ V ) | |
| 16 | 4 5 15 | syl2anc | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ∧ 𝜓 ) } ∈ V ) |
| 17 | 6 12 13 14 16 | ovmpod | ⊢ ( 𝜑 → ( 𝑉 𝑀 𝐸 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ∧ 𝜓 ) } ) |