This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 20-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sprmpod.1 | |- M = ( v e. _V , e e. _V |-> { <. x , y >. | ( x ( v R e ) y /\ ch ) } ) |
|
| sprmpod.2 | |- ( ( ph /\ v = V /\ e = E ) -> ( ch <-> ps ) ) |
||
| sprmpod.3 | |- ( ph -> ( V e. _V /\ E e. _V ) ) |
||
| sprmpod.4 | |- ( ph -> A. x A. y ( x ( V R E ) y -> th ) ) |
||
| sprmpod.5 | |- ( ph -> { <. x , y >. | th } e. _V ) |
||
| Assertion | sprmpod | |- ( ph -> ( V M E ) = { <. x , y >. | ( x ( V R E ) y /\ ps ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sprmpod.1 | |- M = ( v e. _V , e e. _V |-> { <. x , y >. | ( x ( v R e ) y /\ ch ) } ) |
|
| 2 | sprmpod.2 | |- ( ( ph /\ v = V /\ e = E ) -> ( ch <-> ps ) ) |
|
| 3 | sprmpod.3 | |- ( ph -> ( V e. _V /\ E e. _V ) ) |
|
| 4 | sprmpod.4 | |- ( ph -> A. x A. y ( x ( V R E ) y -> th ) ) |
|
| 5 | sprmpod.5 | |- ( ph -> { <. x , y >. | th } e. _V ) |
|
| 6 | 1 | a1i | |- ( ph -> M = ( v e. _V , e e. _V |-> { <. x , y >. | ( x ( v R e ) y /\ ch ) } ) ) |
| 7 | oveq12 | |- ( ( v = V /\ e = E ) -> ( v R e ) = ( V R E ) ) |
|
| 8 | 7 | breqd | |- ( ( v = V /\ e = E ) -> ( x ( v R e ) y <-> x ( V R E ) y ) ) |
| 9 | 8 | adantl | |- ( ( ph /\ ( v = V /\ e = E ) ) -> ( x ( v R e ) y <-> x ( V R E ) y ) ) |
| 10 | 2 | 3expb | |- ( ( ph /\ ( v = V /\ e = E ) ) -> ( ch <-> ps ) ) |
| 11 | 9 10 | anbi12d | |- ( ( ph /\ ( v = V /\ e = E ) ) -> ( ( x ( v R e ) y /\ ch ) <-> ( x ( V R E ) y /\ ps ) ) ) |
| 12 | 11 | opabbidv | |- ( ( ph /\ ( v = V /\ e = E ) ) -> { <. x , y >. | ( x ( v R e ) y /\ ch ) } = { <. x , y >. | ( x ( V R E ) y /\ ps ) } ) |
| 13 | 3 | simpld | |- ( ph -> V e. _V ) |
| 14 | 3 | simprd | |- ( ph -> E e. _V ) |
| 15 | opabbrex | |- ( ( A. x A. y ( x ( V R E ) y -> th ) /\ { <. x , y >. | th } e. _V ) -> { <. x , y >. | ( x ( V R E ) y /\ ps ) } e. _V ) |
|
| 16 | 4 5 15 | syl2anc | |- ( ph -> { <. x , y >. | ( x ( V R E ) y /\ ps ) } e. _V ) |
| 17 | 6 12 13 14 16 | ovmpod | |- ( ph -> ( V M E ) = { <. x , y >. | ( x ( V R E ) y /\ ps ) } ) |