This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by BJ/AV, 20-Jun-2019) (Proof shortened by OpenAI, 25-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opabbrex | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝜑 ) ∧ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∈ 𝑉 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) } ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝜑 ) ∧ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∈ 𝑉 ) → { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∈ 𝑉 ) | |
| 2 | pm3.41 | ⊢ ( ( 𝑥 𝑅 𝑦 → 𝜑 ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) → 𝜑 ) ) | |
| 3 | 2 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) → 𝜑 ) ) |
| 4 | 3 | adantr | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝜑 ) ∧ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∈ 𝑉 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) → 𝜑 ) ) |
| 5 | ssopab2 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) → 𝜑 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) | |
| 6 | 4 5 | syl | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝜑 ) ∧ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∈ 𝑉 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) |
| 7 | 1 6 | ssexd | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝜑 ) ∧ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∈ 𝑉 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) } ∈ V ) |