This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spc2ed.x | ⊢ Ⅎ 𝑥 𝜒 | |
| spc2ed.y | ⊢ Ⅎ 𝑦 𝜒 | ||
| spc2ed.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | spc2ed | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( 𝜒 → ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc2ed.x | ⊢ Ⅎ 𝑥 𝜒 | |
| 2 | spc2ed.y | ⊢ Ⅎ 𝑦 𝜒 | |
| 3 | spc2ed.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | elisset | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 5 | elisset | ⊢ ( 𝐵 ∈ 𝑊 → ∃ 𝑦 𝑦 = 𝐵 ) | |
| 6 | 4 5 | anim12i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 7 | exdistrv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 9 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 10 | 9 1 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝜒 ) |
| 11 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 12 | 11 2 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝜒 ) |
| 13 | anass | ⊢ ( ( ( 𝜒 ∧ 𝜑 ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( 𝜒 ∧ ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) ) | |
| 14 | ancom | ⊢ ( ( 𝜒 ∧ 𝜑 ) ↔ ( 𝜑 ∧ 𝜒 ) ) | |
| 15 | 14 | anbi1i | ⊢ ( ( ( 𝜒 ∧ 𝜑 ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 16 | 13 15 | bitr3i | ⊢ ( ( 𝜒 ∧ ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 17 | 3 | biimparc | ⊢ ( ( 𝜒 ∧ ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) → 𝜓 ) |
| 18 | 16 17 | sylbir | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝜓 ) |
| 19 | 18 | ex | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝜓 ) ) |
| 20 | 12 19 | eximd | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ∃ 𝑦 𝜓 ) ) |
| 21 | 10 20 | eximd | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |
| 22 | 21 | impancom | ⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜒 → ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |
| 23 | 8 22 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( 𝜒 → ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |