This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spc2ed.x | ⊢ Ⅎ 𝑥 𝜒 | |
| spc2ed.y | ⊢ Ⅎ 𝑦 𝜒 | ||
| spc2ed.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | spc2d | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ∀ 𝑥 ∀ 𝑦 𝜓 → 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc2ed.x | ⊢ Ⅎ 𝑥 𝜒 | |
| 2 | spc2ed.y | ⊢ Ⅎ 𝑦 𝜒 | |
| 3 | spc2ed.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | 2nalexn | ⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 𝜓 ↔ ∃ 𝑥 ∃ 𝑦 ¬ 𝜓 ) | |
| 5 | 4 | con1bii | ⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 ¬ 𝜓 ↔ ∀ 𝑥 ∀ 𝑦 𝜓 ) |
| 6 | 1 | nfn | ⊢ Ⅎ 𝑥 ¬ 𝜒 |
| 7 | 2 | nfn | ⊢ Ⅎ 𝑦 ¬ 𝜒 |
| 8 | 3 | notbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) |
| 9 | 6 7 8 | spc2ed | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ¬ 𝜒 → ∃ 𝑥 ∃ 𝑦 ¬ 𝜓 ) ) |
| 10 | 9 | con1d | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ¬ ∃ 𝑥 ∃ 𝑦 ¬ 𝜓 → 𝜒 ) ) |
| 11 | 5 10 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ∀ 𝑥 ∀ 𝑦 𝜓 → 𝜒 ) ) |