This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spc2ed.x | |- F/ x ch |
|
| spc2ed.y | |- F/ y ch |
||
| spc2ed.1 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
||
| Assertion | spc2ed | |- ( ( ph /\ ( A e. V /\ B e. W ) ) -> ( ch -> E. x E. y ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc2ed.x | |- F/ x ch |
|
| 2 | spc2ed.y | |- F/ y ch |
|
| 3 | spc2ed.1 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
|
| 4 | elisset | |- ( A e. V -> E. x x = A ) |
|
| 5 | elisset | |- ( B e. W -> E. y y = B ) |
|
| 6 | 4 5 | anim12i | |- ( ( A e. V /\ B e. W ) -> ( E. x x = A /\ E. y y = B ) ) |
| 7 | exdistrv | |- ( E. x E. y ( x = A /\ y = B ) <-> ( E. x x = A /\ E. y y = B ) ) |
|
| 8 | 6 7 | sylibr | |- ( ( A e. V /\ B e. W ) -> E. x E. y ( x = A /\ y = B ) ) |
| 9 | nfv | |- F/ x ph |
|
| 10 | 9 1 | nfan | |- F/ x ( ph /\ ch ) |
| 11 | nfv | |- F/ y ph |
|
| 12 | 11 2 | nfan | |- F/ y ( ph /\ ch ) |
| 13 | anass | |- ( ( ( ch /\ ph ) /\ ( x = A /\ y = B ) ) <-> ( ch /\ ( ph /\ ( x = A /\ y = B ) ) ) ) |
|
| 14 | ancom | |- ( ( ch /\ ph ) <-> ( ph /\ ch ) ) |
|
| 15 | 14 | anbi1i | |- ( ( ( ch /\ ph ) /\ ( x = A /\ y = B ) ) <-> ( ( ph /\ ch ) /\ ( x = A /\ y = B ) ) ) |
| 16 | 13 15 | bitr3i | |- ( ( ch /\ ( ph /\ ( x = A /\ y = B ) ) ) <-> ( ( ph /\ ch ) /\ ( x = A /\ y = B ) ) ) |
| 17 | 3 | biimparc | |- ( ( ch /\ ( ph /\ ( x = A /\ y = B ) ) ) -> ps ) |
| 18 | 16 17 | sylbir | |- ( ( ( ph /\ ch ) /\ ( x = A /\ y = B ) ) -> ps ) |
| 19 | 18 | ex | |- ( ( ph /\ ch ) -> ( ( x = A /\ y = B ) -> ps ) ) |
| 20 | 12 19 | eximd | |- ( ( ph /\ ch ) -> ( E. y ( x = A /\ y = B ) -> E. y ps ) ) |
| 21 | 10 20 | eximd | |- ( ( ph /\ ch ) -> ( E. x E. y ( x = A /\ y = B ) -> E. x E. y ps ) ) |
| 22 | 21 | impancom | |- ( ( ph /\ E. x E. y ( x = A /\ y = B ) ) -> ( ch -> E. x E. y ps ) ) |
| 23 | 8 22 | sylan2 | |- ( ( ph /\ ( A e. V /\ B e. W ) ) -> ( ch -> E. x E. y ps ) ) |