This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spc2ed.x | ||
| spc2ed.y | |||
| spc2ed.1 | |||
| Assertion | spc2ed |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc2ed.x | ||
| 2 | spc2ed.y | ||
| 3 | spc2ed.1 | ||
| 4 | elisset | ||
| 5 | elisset | ||
| 6 | 4 5 | anim12i | |
| 7 | exdistrv | ||
| 8 | 6 7 | sylibr | |
| 9 | nfv | ||
| 10 | 9 1 | nfan | |
| 11 | nfv | ||
| 12 | 11 2 | nfan | |
| 13 | anass | ||
| 14 | ancom | ||
| 15 | 14 | anbi1i | |
| 16 | 13 15 | bitr3i | |
| 17 | 3 | biimparc | |
| 18 | 16 17 | sylbir | |
| 19 | 18 | ex | |
| 20 | 12 19 | eximd | |
| 21 | 10 20 | eximd | |
| 22 | 21 | impancom | |
| 23 | 8 22 | sylan2 |