This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spc2ed.x | |- F/ x ch |
|
| spc2ed.y | |- F/ y ch |
||
| spc2ed.1 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
||
| Assertion | spc2d | |- ( ( ph /\ ( A e. V /\ B e. W ) ) -> ( A. x A. y ps -> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc2ed.x | |- F/ x ch |
|
| 2 | spc2ed.y | |- F/ y ch |
|
| 3 | spc2ed.1 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
|
| 4 | 2nalexn | |- ( -. A. x A. y ps <-> E. x E. y -. ps ) |
|
| 5 | 4 | con1bii | |- ( -. E. x E. y -. ps <-> A. x A. y ps ) |
| 6 | 1 | nfn | |- F/ x -. ch |
| 7 | 2 | nfn | |- F/ y -. ch |
| 8 | 3 | notbid | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( -. ps <-> -. ch ) ) |
| 9 | 6 7 8 | spc2ed | |- ( ( ph /\ ( A e. V /\ B e. W ) ) -> ( -. ch -> E. x E. y -. ps ) ) |
| 10 | 9 | con1d | |- ( ( ph /\ ( A e. V /\ B e. W ) ) -> ( -. E. x E. y -. ps -> ch ) ) |
| 11 | 5 10 | biimtrrid | |- ( ( ph /\ ( A e. V /\ B e. W ) ) -> ( A. x A. y ps -> ch ) ) |