This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a span of a singleton is a vector. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elspansncl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) → 𝐵 ∈ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | ⊢ ( 𝐴 ∈ ℋ → { 𝐴 } ⊆ ℋ ) | |
| 2 | elspancl | ⊢ ( ( { 𝐴 } ⊆ ℋ ∧ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) → 𝐵 ∈ ℋ ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) → 𝐵 ∈ ℋ ) |