This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a pair of vectors. (Contributed by NM, 9-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spanpr | |- ( ( A e. ~H /\ B e. ~H ) -> ( span ` { ( A +h B ) } ) C_ ( span ` { A , B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnsh | |- ( A e. ~H -> ( span ` { A } ) e. SH ) |
|
| 2 | spansnsh | |- ( B e. ~H -> ( span ` { B } ) e. SH ) |
|
| 3 | shscl | |- ( ( ( span ` { A } ) e. SH /\ ( span ` { B } ) e. SH ) -> ( ( span ` { A } ) +H ( span ` { B } ) ) e. SH ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( span ` { A } ) +H ( span ` { B } ) ) e. SH ) |
| 5 | 4 | adantr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ x e. ( span ` { ( A +h B ) } ) ) -> ( ( span ` { A } ) +H ( span ` { B } ) ) e. SH ) |
| 6 | 1 2 | anim12i | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( span ` { A } ) e. SH /\ ( span ` { B } ) e. SH ) ) |
| 7 | spansnid | |- ( A e. ~H -> A e. ( span ` { A } ) ) |
|
| 8 | spansnid | |- ( B e. ~H -> B e. ( span ` { B } ) ) |
|
| 9 | 7 8 | anim12i | |- ( ( A e. ~H /\ B e. ~H ) -> ( A e. ( span ` { A } ) /\ B e. ( span ` { B } ) ) ) |
| 10 | shsva | |- ( ( ( span ` { A } ) e. SH /\ ( span ` { B } ) e. SH ) -> ( ( A e. ( span ` { A } ) /\ B e. ( span ` { B } ) ) -> ( A +h B ) e. ( ( span ` { A } ) +H ( span ` { B } ) ) ) ) |
|
| 11 | 6 9 10 | sylc | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) e. ( ( span ` { A } ) +H ( span ` { B } ) ) ) |
| 12 | 11 | adantr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ x e. ( span ` { ( A +h B ) } ) ) -> ( A +h B ) e. ( ( span ` { A } ) +H ( span ` { B } ) ) ) |
| 13 | simpr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ x e. ( span ` { ( A +h B ) } ) ) -> x e. ( span ` { ( A +h B ) } ) ) |
|
| 14 | elspansn3 | |- ( ( ( ( span ` { A } ) +H ( span ` { B } ) ) e. SH /\ ( A +h B ) e. ( ( span ` { A } ) +H ( span ` { B } ) ) /\ x e. ( span ` { ( A +h B ) } ) ) -> x e. ( ( span ` { A } ) +H ( span ` { B } ) ) ) |
|
| 15 | 5 12 13 14 | syl3anc | |- ( ( ( A e. ~H /\ B e. ~H ) /\ x e. ( span ` { ( A +h B ) } ) ) -> x e. ( ( span ` { A } ) +H ( span ` { B } ) ) ) |
| 16 | 15 | ex | |- ( ( A e. ~H /\ B e. ~H ) -> ( x e. ( span ` { ( A +h B ) } ) -> x e. ( ( span ` { A } ) +H ( span ` { B } ) ) ) ) |
| 17 | 16 | ssrdv | |- ( ( A e. ~H /\ B e. ~H ) -> ( span ` { ( A +h B ) } ) C_ ( ( span ` { A } ) +H ( span ` { B } ) ) ) |
| 18 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 19 | 18 | fveq2i | |- ( span ` { A , B } ) = ( span ` ( { A } u. { B } ) ) |
| 20 | snssi | |- ( A e. ~H -> { A } C_ ~H ) |
|
| 21 | snssi | |- ( B e. ~H -> { B } C_ ~H ) |
|
| 22 | spanun | |- ( ( { A } C_ ~H /\ { B } C_ ~H ) -> ( span ` ( { A } u. { B } ) ) = ( ( span ` { A } ) +H ( span ` { B } ) ) ) |
|
| 23 | 20 21 22 | syl2an | |- ( ( A e. ~H /\ B e. ~H ) -> ( span ` ( { A } u. { B } ) ) = ( ( span ` { A } ) +H ( span ` { B } ) ) ) |
| 24 | 19 23 | eqtr2id | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( span ` { A } ) +H ( span ` { B } ) ) = ( span ` { A , B } ) ) |
| 25 | 17 24 | sseqtrd | |- ( ( A e. ~H /\ B e. ~H ) -> ( span ` { ( A +h B ) } ) C_ ( span ` { A , B } ) ) |