This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transitivity relation. (Read A < B and B <_ C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | soi.1 | ⊢ 𝑅 Or 𝑆 | |
| soi.2 | ⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) | ||
| Assertion | sotri3 | ⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐴 𝑅 𝐵 ∧ ¬ 𝐶 𝑅 𝐵 ) → 𝐴 𝑅 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soi.1 | ⊢ 𝑅 Or 𝑆 | |
| 2 | soi.2 | ⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) | |
| 3 | 2 | brel | ⊢ ( 𝐴 𝑅 𝐵 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 4 | 3 | simprd | ⊢ ( 𝐴 𝑅 𝐵 → 𝐵 ∈ 𝑆 ) |
| 5 | sotric | ⊢ ( ( 𝑅 Or 𝑆 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ) ) | |
| 6 | 1 5 | mpan | ⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ) ) |
| 7 | 6 | con2bid | ⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ↔ ¬ 𝐶 𝑅 𝐵 ) ) |
| 8 | breq2 | ⊢ ( 𝐶 = 𝐵 → ( 𝐴 𝑅 𝐶 ↔ 𝐴 𝑅 𝐵 ) ) | |
| 9 | 8 | biimprd | ⊢ ( 𝐶 = 𝐵 → ( 𝐴 𝑅 𝐵 → 𝐴 𝑅 𝐶 ) ) |
| 10 | 1 2 | sotri | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) |
| 11 | 10 | expcom | ⊢ ( 𝐵 𝑅 𝐶 → ( 𝐴 𝑅 𝐵 → 𝐴 𝑅 𝐶 ) ) |
| 12 | 9 11 | jaoi | ⊢ ( ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) → ( 𝐴 𝑅 𝐵 → 𝐴 𝑅 𝐶 ) ) |
| 13 | 7 12 | biimtrrdi | ⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ¬ 𝐶 𝑅 𝐵 → ( 𝐴 𝑅 𝐵 → 𝐴 𝑅 𝐶 ) ) ) |
| 14 | 13 | com3r | ⊢ ( 𝐴 𝑅 𝐵 → ( ( 𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ¬ 𝐶 𝑅 𝐵 → 𝐴 𝑅 𝐶 ) ) ) |
| 15 | 4 14 | mpan2d | ⊢ ( 𝐴 𝑅 𝐵 → ( 𝐶 ∈ 𝑆 → ( ¬ 𝐶 𝑅 𝐵 → 𝐴 𝑅 𝐶 ) ) ) |
| 16 | 15 | 3imp21 | ⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐴 𝑅 𝐵 ∧ ¬ 𝐶 𝑅 𝐵 ) → 𝐴 𝑅 𝐶 ) |