This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transitivity relation. (Read B <_ C and C < D implies B < D .) (Contributed by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sotr2 | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( ¬ 𝐶 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sotric | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ) ) | |
| 2 | 1 | ancom2s | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ) ) |
| 3 | 2 | 3adantr3 | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 𝑅 𝐵 ↔ ¬ ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ) ) |
| 4 | 3 | con2bid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) ↔ ¬ 𝐶 𝑅 𝐵 ) ) |
| 5 | breq1 | ⊢ ( 𝐶 = 𝐵 → ( 𝐶 𝑅 𝐷 ↔ 𝐵 𝑅 𝐷 ) ) | |
| 6 | 5 | biimpd | ⊢ ( 𝐶 = 𝐵 → ( 𝐶 𝑅 𝐷 → 𝐵 𝑅 𝐷 ) ) |
| 7 | 6 | a1i | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 = 𝐵 → ( 𝐶 𝑅 𝐷 → 𝐵 𝑅 𝐷 ) ) ) |
| 8 | sotr | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) | |
| 9 | 8 | expd | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐵 𝑅 𝐶 → ( 𝐶 𝑅 𝐷 → 𝐵 𝑅 𝐷 ) ) ) |
| 10 | 7 9 | jaod | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐶 = 𝐵 ∨ 𝐵 𝑅 𝐶 ) → ( 𝐶 𝑅 𝐷 → 𝐵 𝑅 𝐷 ) ) ) |
| 11 | 4 10 | sylbird | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ¬ 𝐶 𝑅 𝐵 → ( 𝐶 𝑅 𝐷 → 𝐵 𝑅 𝐷 ) ) ) |
| 12 | 11 | impd | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( ¬ 𝐶 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) |