This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transitivity relation. (Read B <_ C and C < D implies B < D .) (Contributed by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sotr2 | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( -. C R B /\ C R D ) -> B R D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sotric | |- ( ( R Or A /\ ( C e. A /\ B e. A ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) |
|
| 2 | 1 | ancom2s | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) |
| 3 | 2 | 3adantr3 | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) |
| 4 | 3 | con2bid | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( C = B \/ B R C ) <-> -. C R B ) ) |
| 5 | breq1 | |- ( C = B -> ( C R D <-> B R D ) ) |
|
| 6 | 5 | biimpd | |- ( C = B -> ( C R D -> B R D ) ) |
| 7 | 6 | a1i | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( C = B -> ( C R D -> B R D ) ) ) |
| 8 | sotr | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( B R C /\ C R D ) -> B R D ) ) |
|
| 9 | 8 | expd | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( B R C -> ( C R D -> B R D ) ) ) |
| 10 | 7 9 | jaod | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( C = B \/ B R C ) -> ( C R D -> B R D ) ) ) |
| 11 | 4 10 | sylbird | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( -. C R B -> ( C R D -> B R D ) ) ) |
| 12 | 11 | impd | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( -. C R B /\ C R D ) -> B R D ) ) |