This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A chain of sets is closed under binary intersection. (Contributed by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sorpssin | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 ∩ 𝐶 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → 𝐵 ∈ 𝐴 ) | |
| 2 | dfss2 | ⊢ ( 𝐵 ⊆ 𝐶 ↔ ( 𝐵 ∩ 𝐶 ) = 𝐵 ) | |
| 3 | eleq1 | ⊢ ( ( 𝐵 ∩ 𝐶 ) = 𝐵 → ( ( 𝐵 ∩ 𝐶 ) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 4 | 2 3 | sylbi | ⊢ ( 𝐵 ⊆ 𝐶 → ( ( 𝐵 ∩ 𝐶 ) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) |
| 5 | 1 4 | syl5ibrcom | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 ⊆ 𝐶 → ( 𝐵 ∩ 𝐶 ) ∈ 𝐴 ) ) |
| 6 | simprr | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → 𝐶 ∈ 𝐴 ) | |
| 7 | sseqin2 | ⊢ ( 𝐶 ⊆ 𝐵 ↔ ( 𝐵 ∩ 𝐶 ) = 𝐶 ) | |
| 8 | eleq1 | ⊢ ( ( 𝐵 ∩ 𝐶 ) = 𝐶 → ( ( 𝐵 ∩ 𝐶 ) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 9 | 7 8 | sylbi | ⊢ ( 𝐶 ⊆ 𝐵 → ( ( 𝐵 ∩ 𝐶 ) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
| 10 | 6 9 | syl5ibrcom | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐶 ⊆ 𝐵 → ( 𝐵 ∩ 𝐶 ) ∈ 𝐴 ) ) |
| 11 | sorpssi | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) | |
| 12 | 5 10 11 | mpjaod | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 ∩ 𝐶 ) ∈ 𝐴 ) |