This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | poeq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Po 𝐴 ↔ 𝑆 Po 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝑥 𝑅 𝑥 ↔ 𝑥 𝑆 𝑥 ) ) | |
| 2 | 1 | notbid | ⊢ ( 𝑅 = 𝑆 → ( ¬ 𝑥 𝑅 𝑥 ↔ ¬ 𝑥 𝑆 𝑥 ) ) |
| 3 | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑆 𝑦 ) ) | |
| 4 | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑆 𝑧 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑅 = 𝑆 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝑥 𝑆 𝑦 ∧ 𝑦 𝑆 𝑧 ) ) ) |
| 6 | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝑥 𝑅 𝑧 ↔ 𝑥 𝑆 𝑧 ) ) | |
| 7 | 5 6 | imbi12d | ⊢ ( 𝑅 = 𝑆 → ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝑥 𝑆 𝑦 ∧ 𝑦 𝑆 𝑧 ) → 𝑥 𝑆 𝑧 ) ) ) |
| 8 | 2 7 | anbi12d | ⊢ ( 𝑅 = 𝑆 → ( ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ¬ 𝑥 𝑆 𝑥 ∧ ( ( 𝑥 𝑆 𝑦 ∧ 𝑦 𝑆 𝑧 ) → 𝑥 𝑆 𝑧 ) ) ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑆 𝑥 ∧ ( ( 𝑥 𝑆 𝑦 ∧ 𝑦 𝑆 𝑧 ) → 𝑥 𝑆 𝑧 ) ) ) ) |
| 10 | 9 | 2ralbidv | ⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑆 𝑥 ∧ ( ( 𝑥 𝑆 𝑦 ∧ 𝑦 𝑆 𝑧 ) → 𝑥 𝑆 𝑧 ) ) ) ) |
| 11 | df-po | ⊢ ( 𝑅 Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) | |
| 12 | df-po | ⊢ ( 𝑆 Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑆 𝑥 ∧ ( ( 𝑥 𝑆 𝑦 ∧ 𝑦 𝑆 𝑧 ) → 𝑥 𝑆 𝑧 ) ) ) | |
| 13 | 10 11 12 | 3bitr4g | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Po 𝐴 ↔ 𝑆 Po 𝐴 ) ) |