This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iordsmo.1 | ⊢ Ord 𝐴 | |
| Assertion | iordsmo | ⊢ Smo ( I ↾ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iordsmo.1 | ⊢ Ord 𝐴 | |
| 2 | fnresi | ⊢ ( I ↾ 𝐴 ) Fn 𝐴 | |
| 3 | rnresi | ⊢ ran ( I ↾ 𝐴 ) = 𝐴 | |
| 4 | ordsson | ⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) | |
| 5 | 1 4 | ax-mp | ⊢ 𝐴 ⊆ On |
| 6 | 3 5 | eqsstri | ⊢ ran ( I ↾ 𝐴 ) ⊆ On |
| 7 | df-f | ⊢ ( ( I ↾ 𝐴 ) : 𝐴 ⟶ On ↔ ( ( I ↾ 𝐴 ) Fn 𝐴 ∧ ran ( I ↾ 𝐴 ) ⊆ On ) ) | |
| 8 | 2 6 7 | mpbir2an | ⊢ ( I ↾ 𝐴 ) : 𝐴 ⟶ On |
| 9 | fvresi | ⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
| 11 | fvresi | ⊢ ( 𝑦 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 ) |
| 13 | 10 12 | eleq12d | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ∈ ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ↔ 𝑥 ∈ 𝑦 ) ) |
| 14 | 13 | biimprd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑦 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ∈ ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) ) |
| 15 | dmresi | ⊢ dom ( I ↾ 𝐴 ) = 𝐴 | |
| 16 | 8 1 14 15 | issmo | ⊢ Smo ( I ↾ 𝐴 ) |