This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The halving functions H are left inverses of the doubling function D . (Contributed by AV, 18-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex2dbas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex2dbas.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | ||
| smndex2dbas.0 | ⊢ 0 = ( 0g ‘ 𝑀 ) | ||
| smndex2dbas.d | ⊢ 𝐷 = ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) | ||
| smndex2hbas.n | ⊢ 𝑁 ∈ ℕ0 | ||
| smndex2hbas.h | ⊢ 𝐻 = ( 𝑥 ∈ ℕ0 ↦ if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) ) | ||
| Assertion | smndex2dlinvh | ⊢ ( 𝐻 ∘ 𝐷 ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex2dbas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex2dbas.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 3 | smndex2dbas.0 | ⊢ 0 = ( 0g ‘ 𝑀 ) | |
| 4 | smndex2dbas.d | ⊢ 𝐷 = ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) | |
| 5 | smndex2hbas.n | ⊢ 𝑁 ∈ ℕ0 | |
| 6 | smndex2hbas.h | ⊢ 𝐻 = ( 𝑥 ∈ ℕ0 ↦ if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) ) | |
| 7 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 8 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 2 · 𝑦 ) ∈ ℕ0 ) | |
| 9 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) | |
| 10 | 9 | cbvmptv | ⊢ ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) = ( 𝑦 ∈ ℕ0 ↦ ( 2 · 𝑦 ) ) |
| 11 | 4 10 | eqtri | ⊢ 𝐷 = ( 𝑦 ∈ ℕ0 ↦ ( 2 · 𝑦 ) ) |
| 12 | 11 | a1i | ⊢ ( 2 ∈ ℕ0 → 𝐷 = ( 𝑦 ∈ ℕ0 ↦ ( 2 · 𝑦 ) ) ) |
| 13 | 6 | a1i | ⊢ ( 2 ∈ ℕ0 → 𝐻 = ( 𝑥 ∈ ℕ0 ↦ if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) ) ) |
| 14 | breq2 | ⊢ ( 𝑥 = ( 2 · 𝑦 ) → ( 2 ∥ 𝑥 ↔ 2 ∥ ( 2 · 𝑦 ) ) ) | |
| 15 | oveq1 | ⊢ ( 𝑥 = ( 2 · 𝑦 ) → ( 𝑥 / 2 ) = ( ( 2 · 𝑦 ) / 2 ) ) | |
| 16 | 14 15 | ifbieq1d | ⊢ ( 𝑥 = ( 2 · 𝑦 ) → if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) = if ( 2 ∥ ( 2 · 𝑦 ) , ( ( 2 · 𝑦 ) / 2 ) , 𝑁 ) ) |
| 17 | 8 12 13 16 | fmptco | ⊢ ( 2 ∈ ℕ0 → ( 𝐻 ∘ 𝐷 ) = ( 𝑦 ∈ ℕ0 ↦ if ( 2 ∥ ( 2 · 𝑦 ) , ( ( 2 · 𝑦 ) / 2 ) , 𝑁 ) ) ) |
| 18 | 7 17 | ax-mp | ⊢ ( 𝐻 ∘ 𝐷 ) = ( 𝑦 ∈ ℕ0 ↦ if ( 2 ∥ ( 2 · 𝑦 ) , ( ( 2 · 𝑦 ) / 2 ) , 𝑁 ) ) |
| 19 | nn0z | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) | |
| 20 | eqidd | ⊢ ( 𝑦 ∈ ℕ0 → ( 2 · 𝑦 ) = ( 2 · 𝑦 ) ) | |
| 21 | 2teven | ⊢ ( ( 𝑦 ∈ ℤ ∧ ( 2 · 𝑦 ) = ( 2 · 𝑦 ) ) → 2 ∥ ( 2 · 𝑦 ) ) | |
| 22 | 19 20 21 | syl2anc | ⊢ ( 𝑦 ∈ ℕ0 → 2 ∥ ( 2 · 𝑦 ) ) |
| 23 | 22 | iftrued | ⊢ ( 𝑦 ∈ ℕ0 → if ( 2 ∥ ( 2 · 𝑦 ) , ( ( 2 · 𝑦 ) / 2 ) , 𝑁 ) = ( ( 2 · 𝑦 ) / 2 ) ) |
| 24 | 23 | mpteq2ia | ⊢ ( 𝑦 ∈ ℕ0 ↦ if ( 2 ∥ ( 2 · 𝑦 ) , ( ( 2 · 𝑦 ) / 2 ) , 𝑁 ) ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 2 · 𝑦 ) / 2 ) ) |
| 25 | nn0cn | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℂ ) | |
| 26 | 2cnd | ⊢ ( 𝑦 ∈ ℕ0 → 2 ∈ ℂ ) | |
| 27 | 2ne0 | ⊢ 2 ≠ 0 | |
| 28 | 27 | a1i | ⊢ ( 𝑦 ∈ ℕ0 → 2 ≠ 0 ) |
| 29 | 25 26 28 | divcan3d | ⊢ ( 𝑦 ∈ ℕ0 → ( ( 2 · 𝑦 ) / 2 ) = 𝑦 ) |
| 30 | 29 | mpteq2ia | ⊢ ( 𝑦 ∈ ℕ0 ↦ ( ( 2 · 𝑦 ) / 2 ) ) = ( 𝑦 ∈ ℕ0 ↦ 𝑦 ) |
| 31 | nn0ex | ⊢ ℕ0 ∈ V | |
| 32 | 1 | efmndid | ⊢ ( ℕ0 ∈ V → ( I ↾ ℕ0 ) = ( 0g ‘ 𝑀 ) ) |
| 33 | 31 32 | ax-mp | ⊢ ( I ↾ ℕ0 ) = ( 0g ‘ 𝑀 ) |
| 34 | mptresid | ⊢ ( I ↾ ℕ0 ) = ( 𝑦 ∈ ℕ0 ↦ 𝑦 ) | |
| 35 | 3 33 34 | 3eqtr2ri | ⊢ ( 𝑦 ∈ ℕ0 ↦ 𝑦 ) = 0 |
| 36 | 30 35 | eqtri | ⊢ ( 𝑦 ∈ ℕ0 ↦ ( ( 2 · 𝑦 ) / 2 ) ) = 0 |
| 37 | 24 36 | eqtri | ⊢ ( 𝑦 ∈ ℕ0 ↦ if ( 2 ∥ ( 2 · 𝑦 ) , ( ( 2 · 𝑦 ) / 2 ) , 𝑁 ) ) = 0 |
| 38 | 18 37 | eqtri | ⊢ ( 𝐻 ∘ 𝐷 ) = 0 |