This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum is smaller than subspace join. Remark in Kalmbach p. 65. (Contributed by NM, 12-Jul-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shslej | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) ) | |
| 2 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ) | |
| 3 | 1 2 | sseq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) → ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) ⊆ ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ) ) |
| 4 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) +ℋ if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) ) ) | |
| 5 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) = ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) ) ) | |
| 6 | 4 5 | sseq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) → ( ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) ⊆ ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ↔ ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) +ℋ if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) ) ⊆ ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) ) ) ) |
| 7 | helsh | ⊢ ℋ ∈ Sℋ | |
| 8 | 7 | elimel | ⊢ if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∈ Sℋ |
| 9 | 7 | elimel | ⊢ if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) ∈ Sℋ |
| 10 | 8 9 | shsleji | ⊢ ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) +ℋ if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) ) ⊆ ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) ) |
| 11 | 3 6 10 | dedth2h | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |