This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum is smaller than subspace join. Remark in Kalmbach p. 65. (Contributed by NM, 12-Jul-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shslej | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) C_ ( A vH B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = if ( A e. SH , A , ~H ) -> ( A +H B ) = ( if ( A e. SH , A , ~H ) +H B ) ) |
|
| 2 | oveq1 | |- ( A = if ( A e. SH , A , ~H ) -> ( A vH B ) = ( if ( A e. SH , A , ~H ) vH B ) ) |
|
| 3 | 1 2 | sseq12d | |- ( A = if ( A e. SH , A , ~H ) -> ( ( A +H B ) C_ ( A vH B ) <-> ( if ( A e. SH , A , ~H ) +H B ) C_ ( if ( A e. SH , A , ~H ) vH B ) ) ) |
| 4 | oveq2 | |- ( B = if ( B e. SH , B , ~H ) -> ( if ( A e. SH , A , ~H ) +H B ) = ( if ( A e. SH , A , ~H ) +H if ( B e. SH , B , ~H ) ) ) |
|
| 5 | oveq2 | |- ( B = if ( B e. SH , B , ~H ) -> ( if ( A e. SH , A , ~H ) vH B ) = ( if ( A e. SH , A , ~H ) vH if ( B e. SH , B , ~H ) ) ) |
|
| 6 | 4 5 | sseq12d | |- ( B = if ( B e. SH , B , ~H ) -> ( ( if ( A e. SH , A , ~H ) +H B ) C_ ( if ( A e. SH , A , ~H ) vH B ) <-> ( if ( A e. SH , A , ~H ) +H if ( B e. SH , B , ~H ) ) C_ ( if ( A e. SH , A , ~H ) vH if ( B e. SH , B , ~H ) ) ) ) |
| 7 | helsh | |- ~H e. SH |
|
| 8 | 7 | elimel | |- if ( A e. SH , A , ~H ) e. SH |
| 9 | 7 | elimel | |- if ( B e. SH , B , ~H ) e. SH |
| 10 | 8 9 | shsleji | |- ( if ( A e. SH , A , ~H ) +H if ( B e. SH , B , ~H ) ) C_ ( if ( A e. SH , A , ~H ) vH if ( B e. SH , B , ~H ) ) |
| 11 | 3 6 10 | dedth2h | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) C_ ( A vH B ) ) |