This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Idempotent law for Hilbert subspace sum. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shsidm.1 | |- A e. SH |
|
| Assertion | shsidmi | |- ( A +H A ) = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shsidm.1 | |- A e. SH |
|
| 2 | 1 1 | shseli | |- ( x e. ( A +H A ) <-> E. y e. A E. z e. A x = ( y +h z ) ) |
| 3 | shaddcl | |- ( ( A e. SH /\ y e. A /\ z e. A ) -> ( y +h z ) e. A ) |
|
| 4 | 1 3 | mp3an1 | |- ( ( y e. A /\ z e. A ) -> ( y +h z ) e. A ) |
| 5 | eleq1 | |- ( x = ( y +h z ) -> ( x e. A <-> ( y +h z ) e. A ) ) |
|
| 6 | 4 5 | syl5ibrcom | |- ( ( y e. A /\ z e. A ) -> ( x = ( y +h z ) -> x e. A ) ) |
| 7 | 6 | rexlimivv | |- ( E. y e. A E. z e. A x = ( y +h z ) -> x e. A ) |
| 8 | 2 7 | sylbi | |- ( x e. ( A +H A ) -> x e. A ) |
| 9 | 8 | ssriv | |- ( A +H A ) C_ A |
| 10 | 1 1 | shsub1i | |- A C_ ( A +H A ) |
| 11 | 9 10 | eqssi | |- ( A +H A ) = A |