This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shjcom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shjval | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 2 | shjval | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → ( 𝐵 ∨ℋ 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐴 ) ) ) ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐵 ∨ℋ 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐴 ) ) ) ) |
| 4 | uncom | ⊢ ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) | |
| 5 | 4 | fveq2i | ⊢ ( ⊥ ‘ ( 𝐵 ∪ 𝐴 ) ) = ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 6 | 5 | fveq2i | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐴 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 7 | 3 6 | eqtrdi | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐵 ∨ℋ 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 8 | 1 7 | eqtr4d | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) ) |