This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shlej2 | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( C vH A ) C_ ( C vH B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shlej1 | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( A vH C ) C_ ( B vH C ) ) |
|
| 2 | shjcom | |- ( ( A e. SH /\ C e. SH ) -> ( A vH C ) = ( C vH A ) ) |
|
| 3 | 2 | 3adant2 | |- ( ( A e. SH /\ B e. SH /\ C e. SH ) -> ( A vH C ) = ( C vH A ) ) |
| 4 | 3 | adantr | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( A vH C ) = ( C vH A ) ) |
| 5 | shjcom | |- ( ( B e. SH /\ C e. SH ) -> ( B vH C ) = ( C vH B ) ) |
|
| 6 | 5 | 3adant1 | |- ( ( A e. SH /\ B e. SH /\ C e. SH ) -> ( B vH C ) = ( C vH B ) ) |
| 7 | 6 | adantr | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( B vH C ) = ( C vH B ) ) |
| 8 | 1 4 7 | 3sstr3d | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( C vH A ) C_ ( C vH B ) ) |