This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shjcom | |- ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( B vH A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shjval | |- ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
|
| 2 | shjval | |- ( ( B e. SH /\ A e. SH ) -> ( B vH A ) = ( _|_ ` ( _|_ ` ( B u. A ) ) ) ) |
|
| 3 | 2 | ancoms | |- ( ( A e. SH /\ B e. SH ) -> ( B vH A ) = ( _|_ ` ( _|_ ` ( B u. A ) ) ) ) |
| 4 | uncom | |- ( B u. A ) = ( A u. B ) |
|
| 5 | 4 | fveq2i | |- ( _|_ ` ( B u. A ) ) = ( _|_ ` ( A u. B ) ) |
| 6 | 5 | fveq2i | |- ( _|_ ` ( _|_ ` ( B u. A ) ) ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) |
| 7 | 3 6 | eqtrdi | |- ( ( A e. SH /\ B e. SH ) -> ( B vH A ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
| 8 | 1 7 | eqtr4d | |- ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( B vH A ) ) |