This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to write a shifted set ( B + A ) . (Contributed by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shftlem | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) → { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } = { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) } | |
| 2 | npcan | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) = 𝑥 ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) = 𝑥 ) |
| 4 | 3 | eqcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → 𝑥 = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) |
| 5 | oveq1 | ⊢ ( 𝑦 = ( 𝑥 − 𝐴 ) → ( 𝑦 + 𝐴 ) = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) | |
| 6 | 5 | rspceeqv | ⊢ ( ( ( 𝑥 − 𝐴 ) ∈ 𝐵 ∧ 𝑥 = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) ) |
| 7 | 6 | expcom | ⊢ ( 𝑥 = ( ( 𝑥 − 𝐴 ) + 𝐴 ) → ( ( 𝑥 − 𝐴 ) ∈ 𝐵 → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) ) ) |
| 8 | 4 7 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑥 − 𝐴 ) ∈ 𝐵 → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) ) ) |
| 9 | 8 | expimpd | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) ) ) |
| 11 | ssel2 | ⊢ ( ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) | |
| 12 | addcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑦 + 𝐴 ) ∈ ℂ ) | |
| 13 | 11 12 | sylan | ⊢ ( ( ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐴 ∈ ℂ ) → ( 𝑦 + 𝐴 ) ∈ ℂ ) |
| 14 | pncan | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 𝐴 ) − 𝐴 ) = 𝑦 ) | |
| 15 | 11 14 | sylan | ⊢ ( ( ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 𝐴 ) − 𝐴 ) = 𝑦 ) |
| 16 | simplr | ⊢ ( ( ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐴 ∈ ℂ ) → 𝑦 ∈ 𝐵 ) | |
| 17 | 15 16 | eqeltrd | ⊢ ( ( ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 𝐴 ) − 𝐴 ) ∈ 𝐵 ) |
| 18 | 13 17 | jca | ⊢ ( ( ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 𝐴 ) ∈ ℂ ∧ ( ( 𝑦 + 𝐴 ) − 𝐴 ) ∈ 𝐵 ) ) |
| 19 | 18 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑦 + 𝐴 ) ∈ ℂ ∧ ( ( 𝑦 + 𝐴 ) − 𝐴 ) ∈ 𝐵 ) ) |
| 20 | 19 | anassrs | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 + 𝐴 ) ∈ ℂ ∧ ( ( 𝑦 + 𝐴 ) − 𝐴 ) ∈ 𝐵 ) ) |
| 21 | eleq1 | ⊢ ( 𝑥 = ( 𝑦 + 𝐴 ) → ( 𝑥 ∈ ℂ ↔ ( 𝑦 + 𝐴 ) ∈ ℂ ) ) | |
| 22 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 𝐴 ) → ( 𝑥 − 𝐴 ) = ( ( 𝑦 + 𝐴 ) − 𝐴 ) ) | |
| 23 | 22 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 + 𝐴 ) → ( ( 𝑥 − 𝐴 ) ∈ 𝐵 ↔ ( ( 𝑦 + 𝐴 ) − 𝐴 ) ∈ 𝐵 ) ) |
| 24 | 21 23 | anbi12d | ⊢ ( 𝑥 = ( 𝑦 + 𝐴 ) → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) ↔ ( ( 𝑦 + 𝐴 ) ∈ ℂ ∧ ( ( 𝑦 + 𝐴 ) − 𝐴 ) ∈ 𝐵 ) ) ) |
| 25 | 20 24 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = ( 𝑦 + 𝐴 ) → ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) ) ) |
| 26 | 25 | rexlimdva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) → ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) ) ) |
| 27 | 10 26 | impbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) ) ) |
| 28 | 27 | abbidv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) → { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) } ) |
| 29 | 1 28 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) → { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) } ) |