This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to write a shifted set ( B + A ) . (Contributed by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shftlem | |- ( ( A e. CC /\ B C_ CC ) -> { x e. CC | ( x - A ) e. B } = { x | E. y e. B x = ( y + A ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. CC | ( x - A ) e. B } = { x | ( x e. CC /\ ( x - A ) e. B ) } |
|
| 2 | npcan | |- ( ( x e. CC /\ A e. CC ) -> ( ( x - A ) + A ) = x ) |
|
| 3 | 2 | ancoms | |- ( ( A e. CC /\ x e. CC ) -> ( ( x - A ) + A ) = x ) |
| 4 | 3 | eqcomd | |- ( ( A e. CC /\ x e. CC ) -> x = ( ( x - A ) + A ) ) |
| 5 | oveq1 | |- ( y = ( x - A ) -> ( y + A ) = ( ( x - A ) + A ) ) |
|
| 6 | 5 | rspceeqv | |- ( ( ( x - A ) e. B /\ x = ( ( x - A ) + A ) ) -> E. y e. B x = ( y + A ) ) |
| 7 | 6 | expcom | |- ( x = ( ( x - A ) + A ) -> ( ( x - A ) e. B -> E. y e. B x = ( y + A ) ) ) |
| 8 | 4 7 | syl | |- ( ( A e. CC /\ x e. CC ) -> ( ( x - A ) e. B -> E. y e. B x = ( y + A ) ) ) |
| 9 | 8 | expimpd | |- ( A e. CC -> ( ( x e. CC /\ ( x - A ) e. B ) -> E. y e. B x = ( y + A ) ) ) |
| 10 | 9 | adantr | |- ( ( A e. CC /\ B C_ CC ) -> ( ( x e. CC /\ ( x - A ) e. B ) -> E. y e. B x = ( y + A ) ) ) |
| 11 | ssel2 | |- ( ( B C_ CC /\ y e. B ) -> y e. CC ) |
|
| 12 | addcl | |- ( ( y e. CC /\ A e. CC ) -> ( y + A ) e. CC ) |
|
| 13 | 11 12 | sylan | |- ( ( ( B C_ CC /\ y e. B ) /\ A e. CC ) -> ( y + A ) e. CC ) |
| 14 | pncan | |- ( ( y e. CC /\ A e. CC ) -> ( ( y + A ) - A ) = y ) |
|
| 15 | 11 14 | sylan | |- ( ( ( B C_ CC /\ y e. B ) /\ A e. CC ) -> ( ( y + A ) - A ) = y ) |
| 16 | simplr | |- ( ( ( B C_ CC /\ y e. B ) /\ A e. CC ) -> y e. B ) |
|
| 17 | 15 16 | eqeltrd | |- ( ( ( B C_ CC /\ y e. B ) /\ A e. CC ) -> ( ( y + A ) - A ) e. B ) |
| 18 | 13 17 | jca | |- ( ( ( B C_ CC /\ y e. B ) /\ A e. CC ) -> ( ( y + A ) e. CC /\ ( ( y + A ) - A ) e. B ) ) |
| 19 | 18 | ancoms | |- ( ( A e. CC /\ ( B C_ CC /\ y e. B ) ) -> ( ( y + A ) e. CC /\ ( ( y + A ) - A ) e. B ) ) |
| 20 | 19 | anassrs | |- ( ( ( A e. CC /\ B C_ CC ) /\ y e. B ) -> ( ( y + A ) e. CC /\ ( ( y + A ) - A ) e. B ) ) |
| 21 | eleq1 | |- ( x = ( y + A ) -> ( x e. CC <-> ( y + A ) e. CC ) ) |
|
| 22 | oveq1 | |- ( x = ( y + A ) -> ( x - A ) = ( ( y + A ) - A ) ) |
|
| 23 | 22 | eleq1d | |- ( x = ( y + A ) -> ( ( x - A ) e. B <-> ( ( y + A ) - A ) e. B ) ) |
| 24 | 21 23 | anbi12d | |- ( x = ( y + A ) -> ( ( x e. CC /\ ( x - A ) e. B ) <-> ( ( y + A ) e. CC /\ ( ( y + A ) - A ) e. B ) ) ) |
| 25 | 20 24 | syl5ibrcom | |- ( ( ( A e. CC /\ B C_ CC ) /\ y e. B ) -> ( x = ( y + A ) -> ( x e. CC /\ ( x - A ) e. B ) ) ) |
| 26 | 25 | rexlimdva | |- ( ( A e. CC /\ B C_ CC ) -> ( E. y e. B x = ( y + A ) -> ( x e. CC /\ ( x - A ) e. B ) ) ) |
| 27 | 10 26 | impbid | |- ( ( A e. CC /\ B C_ CC ) -> ( ( x e. CC /\ ( x - A ) e. B ) <-> E. y e. B x = ( y + A ) ) ) |
| 28 | 27 | abbidv | |- ( ( A e. CC /\ B C_ CC ) -> { x | ( x e. CC /\ ( x - A ) e. B ) } = { x | E. y e. B x = ( y + A ) } ) |
| 29 | 1 28 | eqtrid | |- ( ( A e. CC /\ B C_ CC ) -> { x e. CC | ( x - A ) e. B } = { x | E. y e. B x = ( y + A ) } ) |