This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftcan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐹 shift - 𝐴 ) shift 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | negneg | ⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - - 𝐴 = 𝐴 ) |
| 4 | 3 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift - 𝐴 ) shift - - 𝐴 ) = ( ( 𝐹 shift - 𝐴 ) shift 𝐴 ) ) |
| 5 | 4 | fveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐹 shift - 𝐴 ) shift - - 𝐴 ) ‘ 𝐵 ) = ( ( ( 𝐹 shift - 𝐴 ) shift 𝐴 ) ‘ 𝐵 ) ) |
| 6 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 7 | 1 | shftcan1 | ⊢ ( ( - 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐹 shift - 𝐴 ) shift - - 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 8 | 6 7 | sylan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐹 shift - 𝐴 ) shift - - 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 9 | 5 8 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐹 shift - 𝐴 ) shift 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |