This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | |- F e. _V |
|
| Assertion | shftcan2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( F shift -u A ) shift A ) ` B ) = ( F ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | |- F e. _V |
|
| 2 | negneg | |- ( A e. CC -> -u -u A = A ) |
|
| 3 | 2 | adantr | |- ( ( A e. CC /\ B e. CC ) -> -u -u A = A ) |
| 4 | 3 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( F shift -u A ) shift -u -u A ) = ( ( F shift -u A ) shift A ) ) |
| 5 | 4 | fveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( F shift -u A ) shift -u -u A ) ` B ) = ( ( ( F shift -u A ) shift A ) ` B ) ) |
| 6 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 7 | 1 | shftcan1 | |- ( ( -u A e. CC /\ B e. CC ) -> ( ( ( F shift -u A ) shift -u -u A ) ` B ) = ( F ` B ) ) |
| 8 | 6 7 | sylan | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( F shift -u A ) shift -u -u A ) ` B ) = ( F ` B ) ) |
| 9 | 5 8 | eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( F shift -u A ) shift A ) ` B ) = ( F ` B ) ) |