This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set-like predicate. (Contributed by Mario Carneiro, 19-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-se | ⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | ⊢ 𝑅 | |
| 1 | cA | ⊢ 𝐴 | |
| 2 | 1 0 | wse | ⊢ 𝑅 Se 𝐴 |
| 3 | vx | ⊢ 𝑥 | |
| 4 | vy | ⊢ 𝑦 | |
| 5 | 4 | cv | ⊢ 𝑦 |
| 6 | 3 | cv | ⊢ 𝑥 |
| 7 | 5 6 0 | wbr | ⊢ 𝑦 𝑅 𝑥 |
| 8 | 7 4 1 | crab | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } |
| 9 | cvv | ⊢ V | |
| 10 | 8 9 | wcel | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V |
| 11 | 10 3 1 | wral | ⊢ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V |
| 12 | 2 11 | wb | ⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |