This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | freq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑆 𝑦 ) ) | |
| 2 | 1 | notbid | ⊢ ( 𝑅 = 𝑆 → ( ¬ 𝑧 𝑅 𝑦 ↔ ¬ 𝑧 𝑆 𝑦 ) ) |
| 3 | 2 | rexralbidv | ⊢ ( 𝑅 = 𝑆 → ( ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑆 𝑦 ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑅 = 𝑆 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑆 𝑦 ) ) ) |
| 5 | 4 | albidv | ⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑆 𝑦 ) ) ) |
| 6 | df-fr | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) | |
| 7 | df-fr | ⊢ ( 𝑆 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑆 𝑦 ) ) | |
| 8 | 5 6 7 | 3bitr4g | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴 ) ) |