This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of set-like relation with Cartesian product of its field. (Contributed by Mario Carneiro, 22-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seinxp | |- ( R Se A <-> ( R i^i ( A X. A ) ) Se A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp | |- ( ( y e. A /\ x e. A ) -> ( y R x <-> y ( R i^i ( A X. A ) ) x ) ) |
|
| 2 | 1 | ancoms | |- ( ( x e. A /\ y e. A ) -> ( y R x <-> y ( R i^i ( A X. A ) ) x ) ) |
| 3 | 2 | rabbidva | |- ( x e. A -> { y e. A | y R x } = { y e. A | y ( R i^i ( A X. A ) ) x } ) |
| 4 | 3 | eleq1d | |- ( x e. A -> ( { y e. A | y R x } e. _V <-> { y e. A | y ( R i^i ( A X. A ) ) x } e. _V ) ) |
| 5 | 4 | ralbiia | |- ( A. x e. A { y e. A | y R x } e. _V <-> A. x e. A { y e. A | y ( R i^i ( A X. A ) ) x } e. _V ) |
| 6 | df-se | |- ( R Se A <-> A. x e. A { y e. A | y R x } e. _V ) |
|
| 7 | df-se | |- ( ( R i^i ( A X. A ) ) Se A <-> A. x e. A { y e. A | y ( R i^i ( A X. A ) ) x } e. _V ) |
|
| 8 | 5 6 7 | 3bitr4i | |- ( R Se A <-> ( R i^i ( A X. A ) ) Se A ) |