This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing " x is (effectively) not free in ph ". (Contributed by Gérard Lang, 14-Nov-2013) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 22-Sep-2018) Avoid ax-13 . (Revised by Wolf Lammen, 30-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbnf2 | |- ( F/ x ph <-> A. y A. z ( [ y / x ] ph <-> [ z / x ] ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | |- F/ y ph |
|
| 2 | 1 | sb8ef | |- ( E. x ph <-> E. y [ y / x ] ph ) |
| 3 | sb8v | |- ( A. x ph <-> A. z [ z / x ] ph ) |
|
| 4 | 2 3 | imbi12i | |- ( ( E. x ph -> A. x ph ) <-> ( E. y [ y / x ] ph -> A. z [ z / x ] ph ) ) |
| 5 | df-nf | |- ( F/ x ph <-> ( E. x ph -> A. x ph ) ) |
|
| 6 | pm11.53v | |- ( A. y A. z ( [ y / x ] ph -> [ z / x ] ph ) <-> ( E. y [ y / x ] ph -> A. z [ z / x ] ph ) ) |
|
| 7 | 4 5 6 | 3bitr4i | |- ( F/ x ph <-> A. y A. z ( [ y / x ] ph -> [ z / x ] ph ) ) |
| 8 | nfv | |- F/ z ph |
|
| 9 | 8 | sb8ef | |- ( E. x ph <-> E. z [ z / x ] ph ) |
| 10 | sb8v | |- ( A. x ph <-> A. y [ y / x ] ph ) |
|
| 11 | 9 10 | imbi12i | |- ( ( E. x ph -> A. x ph ) <-> ( E. z [ z / x ] ph -> A. y [ y / x ] ph ) ) |
| 12 | pm11.53v | |- ( A. z A. y ( [ z / x ] ph -> [ y / x ] ph ) <-> ( E. z [ z / x ] ph -> A. y [ y / x ] ph ) ) |
|
| 13 | 11 5 12 | 3bitr4i | |- ( F/ x ph <-> A. z A. y ( [ z / x ] ph -> [ y / x ] ph ) ) |
| 14 | alcom | |- ( A. z A. y ( [ z / x ] ph -> [ y / x ] ph ) <-> A. y A. z ( [ z / x ] ph -> [ y / x ] ph ) ) |
|
| 15 | 13 14 | bitri | |- ( F/ x ph <-> A. y A. z ( [ z / x ] ph -> [ y / x ] ph ) ) |
| 16 | 7 15 | anbi12i | |- ( ( F/ x ph /\ F/ x ph ) <-> ( A. y A. z ( [ y / x ] ph -> [ z / x ] ph ) /\ A. y A. z ( [ z / x ] ph -> [ y / x ] ph ) ) ) |
| 17 | pm4.24 | |- ( F/ x ph <-> ( F/ x ph /\ F/ x ph ) ) |
|
| 18 | 2albiim | |- ( A. y A. z ( [ y / x ] ph <-> [ z / x ] ph ) <-> ( A. y A. z ( [ y / x ] ph -> [ z / x ] ph ) /\ A. y A. z ( [ z / x ] ph -> [ y / x ] ph ) ) ) |
|
| 19 | 16 17 18 | 3bitr4i | |- ( F/ x ph <-> A. y A. z ( [ y / x ] ph <-> [ z / x ] ph ) ) |