This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993) (Proof shortened by Wolf Lammen, 30-Apr-2018) Revise df-sb . (Revised by BJ, 25-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbn | |- ( [ t / x ] -. ph <-> -. [ t / x ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsb | |- ( [ t / x ] -. ph <-> A. y ( y = t -> A. x ( x = y -> -. ph ) ) ) |
|
| 2 | alinexa | |- ( A. x ( x = y -> -. ph ) <-> -. E. x ( x = y /\ ph ) ) |
|
| 3 | 2 | imbi2i | |- ( ( y = t -> A. x ( x = y -> -. ph ) ) <-> ( y = t -> -. E. x ( x = y /\ ph ) ) ) |
| 4 | 3 | albii | |- ( A. y ( y = t -> A. x ( x = y -> -. ph ) ) <-> A. y ( y = t -> -. E. x ( x = y /\ ph ) ) ) |
| 5 | alinexa | |- ( A. y ( y = t -> -. E. x ( x = y /\ ph ) ) <-> -. E. y ( y = t /\ E. x ( x = y /\ ph ) ) ) |
|
| 6 | dfsb7 | |- ( [ t / x ] ph <-> E. y ( y = t /\ E. x ( x = y /\ ph ) ) ) |
|
| 7 | 5 6 | xchbinxr | |- ( A. y ( y = t -> -. E. x ( x = y /\ ph ) ) <-> -. [ t / x ] ph ) |
| 8 | 1 4 7 | 3bitri | |- ( [ t / x ] -. ph <-> -. [ t / x ] ph ) |