This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012) (Proof shortened by Alexander van der Vekens, 23-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcssg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 ⊆ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcal | ⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
| 2 | sbcimg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 → [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ) ) ) | |
| 3 | sbcel2 | ⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) | |
| 4 | sbcel2 | ⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 5 | 3 4 | imbi12i | ⊢ ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 → [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 6 | 2 5 | bitrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) ) |
| 7 | 6 | albidv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) ) |
| 8 | 1 7 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) ) |
| 9 | df-ss | ⊢ ( 𝐵 ⊆ 𝐶 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
| 10 | 9 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ⊆ 𝐶 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 11 | df-ss | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) | |
| 12 | 8 10 11 | 3bitr4g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 ⊆ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |