This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcreu | ⊢ ( [ 𝐴 / 𝑥 ] ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] ∃! 𝑦 ∈ 𝐵 𝜑 → 𝐴 ∈ V ) | |
| 2 | reurex | ⊢ ( ∃! 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 → ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) | |
| 3 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) | |
| 4 | 3 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |
| 5 | 2 4 | syl | ⊢ ( ∃! 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |
| 6 | dfsbcq2 | ⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] ∃! 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝐴 / 𝑥 ] ∃! 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 7 | dfsbcq2 | ⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 8 | 7 | reubidv | ⊢ ( 𝑧 = 𝐴 → ( ∃! 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ↔ ∃! 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 9 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 10 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 | |
| 11 | 9 10 | nfreuw | ⊢ Ⅎ 𝑥 ∃! 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 |
| 12 | sbequ12 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 13 | 12 | reubidv | ⊢ ( 𝑥 = 𝑧 → ( ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 14 | 11 13 | sbiev | ⊢ ( [ 𝑧 / 𝑥 ] ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 15 | 6 8 14 | vtoclbg | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 16 | 1 5 15 | pm5.21nii | ⊢ ( [ 𝐴 / 𝑥 ] ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) |