This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcreu | |- ( [. A / x ]. E! y e. B ph <-> E! y e. B [. A / x ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | |- ( [. A / x ]. E! y e. B ph -> A e. _V ) |
|
| 2 | reurex | |- ( E! y e. B [. A / x ]. ph -> E. y e. B [. A / x ]. ph ) |
|
| 3 | sbcex | |- ( [. A / x ]. ph -> A e. _V ) |
|
| 4 | 3 | rexlimivw | |- ( E. y e. B [. A / x ]. ph -> A e. _V ) |
| 5 | 2 4 | syl | |- ( E! y e. B [. A / x ]. ph -> A e. _V ) |
| 6 | dfsbcq2 | |- ( z = A -> ( [ z / x ] E! y e. B ph <-> [. A / x ]. E! y e. B ph ) ) |
|
| 7 | dfsbcq2 | |- ( z = A -> ( [ z / x ] ph <-> [. A / x ]. ph ) ) |
|
| 8 | 7 | reubidv | |- ( z = A -> ( E! y e. B [ z / x ] ph <-> E! y e. B [. A / x ]. ph ) ) |
| 9 | nfcv | |- F/_ x B |
|
| 10 | nfs1v | |- F/ x [ z / x ] ph |
|
| 11 | 9 10 | nfreuw | |- F/ x E! y e. B [ z / x ] ph |
| 12 | sbequ12 | |- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
|
| 13 | 12 | reubidv | |- ( x = z -> ( E! y e. B ph <-> E! y e. B [ z / x ] ph ) ) |
| 14 | 11 13 | sbiev | |- ( [ z / x ] E! y e. B ph <-> E! y e. B [ z / x ] ph ) |
| 15 | 6 8 14 | vtoclbg | |- ( A e. _V -> ( [. A / x ]. E! y e. B ph <-> E! y e. B [. A / x ]. ph ) ) |
| 16 | 1 5 15 | pm5.21nii | |- ( [. A / x ]. E! y e. B ph <-> E! y e. B [. A / x ]. ph ) |