This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016) (Revised by NM, 17-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcor | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) → 𝐴 ∈ V ) | |
| 2 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) | |
| 3 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝜓 → 𝐴 ∈ V ) | |
| 4 | 2 3 | jaoi | ⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) → 𝐴 ∈ V ) |
| 5 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ) ) | |
| 6 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 7 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝐴 / 𝑥 ] 𝜓 ) ) | |
| 8 | 6 7 | orbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ∨ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
| 9 | sbor | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∨ [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 10 | 5 8 9 | vtoclbg | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
| 11 | 1 4 10 | pm5.21nii | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) |