This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016) (Revised by NM, 17-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcor | |- ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | |- ( [. A / x ]. ( ph \/ ps ) -> A e. _V ) |
|
| 2 | sbcex | |- ( [. A / x ]. ph -> A e. _V ) |
|
| 3 | sbcex | |- ( [. A / x ]. ps -> A e. _V ) |
|
| 4 | 2 3 | jaoi | |- ( ( [. A / x ]. ph \/ [. A / x ]. ps ) -> A e. _V ) |
| 5 | dfsbcq2 | |- ( y = A -> ( [ y / x ] ( ph \/ ps ) <-> [. A / x ]. ( ph \/ ps ) ) ) |
|
| 6 | dfsbcq2 | |- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
|
| 7 | dfsbcq2 | |- ( y = A -> ( [ y / x ] ps <-> [. A / x ]. ps ) ) |
|
| 8 | 6 7 | orbi12d | |- ( y = A -> ( ( [ y / x ] ph \/ [ y / x ] ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) ) |
| 9 | sbor | |- ( [ y / x ] ( ph \/ ps ) <-> ( [ y / x ] ph \/ [ y / x ] ps ) ) |
|
| 10 | 5 8 9 | vtoclbg | |- ( A e. _V -> ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) ) |
| 11 | 1 4 10 | pm5.21nii | |- ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) |