This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutativity law for substitution. This theorem was incorrectly used as our previous version of pm11.07 but may still be useful. (Contributed by Andrew Salmon, 17-Jun-2011) (Proof shortened by Jim Kingdon, 22-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcom4 | ⊢ ( [ 𝑤 / 𝑥 ] [ 𝑦 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbv | ⊢ ( [ 𝑤 / 𝑥 ] 𝜑 ↔ 𝜑 ) | |
| 2 | sbv | ⊢ ( [ 𝑦 / 𝑧 ] 𝜑 ↔ 𝜑 ) | |
| 3 | 2 | sbbii | ⊢ ( [ 𝑤 / 𝑥 ] [ 𝑦 / 𝑧 ] 𝜑 ↔ [ 𝑤 / 𝑥 ] 𝜑 ) |
| 4 | sbv | ⊢ ( [ 𝑤 / 𝑧 ] 𝜑 ↔ 𝜑 ) | |
| 5 | 4 | sbbii | ⊢ ( [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 6 | sbv | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) | |
| 7 | 5 6 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ↔ 𝜑 ) |
| 8 | 1 3 7 | 3bitr4i | ⊢ ( [ 𝑤 / 𝑥 ] [ 𝑦 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) |