This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substituting y for x and then z for y is equivalent to substituting z for both x and y . Usage of this theorem is discouraged because it depends on ax-13 . For a version requiring a disjoint variable, but fewer axioms, see sbcom3vv . (Contributed by Giovanni Mascellani, 8-Apr-2018) Remove dependency on ax-11 . (Revised by Wolf Lammen, 16-Sep-2018) (Proof shortened by Wolf Lammen, 16-Sep-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcom3 | ⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 𝑦 = 𝑧 | |
| 2 | drsb2 | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 3 | 1 2 | sbbid | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 4 | sb4b | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) | |
| 5 | sbequ | ⊢ ( 𝑦 = 𝑧 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 6 | 5 | pm5.74i | ⊢ ( ( 𝑦 = 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 = 𝑧 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 = 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 8 | 4 7 | bitrdi | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
| 9 | sb4b | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → [ 𝑧 / 𝑥 ] 𝜑 ) ) ) | |
| 10 | 8 9 | bitr4d | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 11 | 3 10 | pm2.61i | ⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) |