This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993) Remove dependency on ax-10 and ax-13 . (Revised by Wolf Lammen, 24-Nov-2022) Revise df-sb . (Revised by Steven Nguyen, 11-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbbid.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| sbbid.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | sbbid | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbid.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | sbbid.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 1 2 | alrimi | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) ) |
| 4 | spsbbi | ⊢ ( ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜒 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜒 ) ) |