This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of exchanging two variables. Both sides of the biconditional exchange x and y , either via two temporary variables u and v , or a single temporary w . (Contributed by Jim Kingdon, 25-Sep-2018) Avoid ax-11 . (Revised by SN, 3-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbco4 | ⊢ ( [ 𝑦 / 𝑢 ] [ 𝑥 / 𝑣 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ | ⊢ ( 𝑢 = 𝑦 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) | |
| 2 | 1 | sbbidv | ⊢ ( 𝑢 = 𝑦 → ( [ 𝑥 / 𝑣 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 3 | 2 | sbievw | ⊢ ( [ 𝑦 / 𝑢 ] [ 𝑥 / 𝑣 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
| 4 | sbco4lem | ⊢ ( [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑡 ] [ 𝑦 / 𝑥 ] [ 𝑡 / 𝑦 ] 𝜑 ) | |
| 5 | sbco4lem | ⊢ ( [ 𝑥 / 𝑡 ] [ 𝑦 / 𝑥 ] [ 𝑡 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) | |
| 6 | 3 4 5 | 3bitri | ⊢ ( [ 𝑦 / 𝑢 ] [ 𝑥 / 𝑣 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |