This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A composition law for substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jun-1993) (Proof shortened by Wolf Lammen, 18-Sep-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbco3 | ⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drsb1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑧 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 2 | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑦 | |
| 3 | sbequ12a | ⊢ ( 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑥 / 𝑦 ] 𝜑 ) ) | |
| 4 | 3 | sps | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑥 / 𝑦 ] 𝜑 ) ) |
| 5 | 2 4 | sbbid | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑧 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ) ) |
| 6 | 1 5 | bitr3d | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ) ) |
| 7 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 8 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 9 | nfsb2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 10 | 7 8 9 | sbco2d | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑧 / 𝑥 ] [ 𝑥 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 11 | sbco | ⊢ ( [ 𝑥 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑥 / 𝑦 ] 𝜑 ) | |
| 12 | 11 | sbbii | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑥 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ) |
| 13 | 10 12 | bitr3di | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ) ) |
| 14 | 6 13 | pm2.61i | ⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ) |