This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019) (Revised by SN, 2-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbcie2s.a | ⊢ 𝐴 = ( 𝐸 ‘ 𝑊 ) | |
| sbcie2s.b | ⊢ 𝐵 = ( 𝐹 ‘ 𝑊 ) | ||
| sbcie2s.1 | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | sbcie2s | ⊢ ( 𝑤 = 𝑊 → ( [ ( 𝐸 ‘ 𝑤 ) / 𝑎 ] [ ( 𝐹 ‘ 𝑤 ) / 𝑏 ] 𝜑 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcie2s.a | ⊢ 𝐴 = ( 𝐸 ‘ 𝑊 ) | |
| 2 | sbcie2s.b | ⊢ 𝐵 = ( 𝐹 ‘ 𝑊 ) | |
| 3 | sbcie2s.1 | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | fvex | ⊢ ( 𝐸 ‘ 𝑤 ) ∈ V | |
| 5 | fvex | ⊢ ( 𝐹 ‘ 𝑤 ) ∈ V | |
| 6 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) = ( 𝐸 ‘ 𝑊 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) = 𝐴 ) |
| 8 | 7 | eqeq2d | ⊢ ( 𝑤 = 𝑊 → ( 𝑎 = ( 𝐸 ‘ 𝑤 ) ↔ 𝑎 = 𝐴 ) ) |
| 9 | 8 | biimpd | ⊢ ( 𝑤 = 𝑊 → ( 𝑎 = ( 𝐸 ‘ 𝑤 ) → 𝑎 = 𝐴 ) ) |
| 10 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑊 ) ) | |
| 11 | 10 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( 𝐹 ‘ 𝑤 ) = 𝐵 ) |
| 12 | 11 | eqeq2d | ⊢ ( 𝑤 = 𝑊 → ( 𝑏 = ( 𝐹 ‘ 𝑤 ) ↔ 𝑏 = 𝐵 ) ) |
| 13 | 12 | biimpd | ⊢ ( 𝑤 = 𝑊 → ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → 𝑏 = 𝐵 ) ) |
| 14 | 3 | a1i | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) ) |
| 15 | 9 13 14 | syl2and | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑎 = ( 𝐸 ‘ 𝑤 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) |
| 16 | 4 5 15 | sbc2iedv | ⊢ ( 𝑤 = 𝑊 → ( [ ( 𝐸 ‘ 𝑤 ) / 𝑎 ] [ ( 𝐹 ‘ 𝑤 ) / 𝑏 ] 𝜑 ↔ 𝜓 ) ) |