This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019) (Revised by SN, 2-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbcie2s.a | |- A = ( E ` W ) |
|
| sbcie2s.b | |- B = ( F ` W ) |
||
| sbcie2s.1 | |- ( ( a = A /\ b = B ) -> ( ph <-> ps ) ) |
||
| Assertion | sbcie2s | |- ( w = W -> ( [. ( E ` w ) / a ]. [. ( F ` w ) / b ]. ph <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcie2s.a | |- A = ( E ` W ) |
|
| 2 | sbcie2s.b | |- B = ( F ` W ) |
|
| 3 | sbcie2s.1 | |- ( ( a = A /\ b = B ) -> ( ph <-> ps ) ) |
|
| 4 | fvex | |- ( E ` w ) e. _V |
|
| 5 | fvex | |- ( F ` w ) e. _V |
|
| 6 | fveq2 | |- ( w = W -> ( E ` w ) = ( E ` W ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( w = W -> ( E ` w ) = A ) |
| 8 | 7 | eqeq2d | |- ( w = W -> ( a = ( E ` w ) <-> a = A ) ) |
| 9 | 8 | biimpd | |- ( w = W -> ( a = ( E ` w ) -> a = A ) ) |
| 10 | fveq2 | |- ( w = W -> ( F ` w ) = ( F ` W ) ) |
|
| 11 | 10 2 | eqtr4di | |- ( w = W -> ( F ` w ) = B ) |
| 12 | 11 | eqeq2d | |- ( w = W -> ( b = ( F ` w ) <-> b = B ) ) |
| 13 | 12 | biimpd | |- ( w = W -> ( b = ( F ` w ) -> b = B ) ) |
| 14 | 3 | a1i | |- ( w = W -> ( ( a = A /\ b = B ) -> ( ph <-> ps ) ) ) |
| 15 | 9 13 14 | syl2and | |- ( w = W -> ( ( a = ( E ` w ) /\ b = ( F ` w ) ) -> ( ph <-> ps ) ) ) |
| 16 | 4 5 15 | sbc2iedv | |- ( w = W -> ( [. ( E ` w ) / a ]. [. ( F ` w ) / b ]. ph <-> ps ) ) |